

CONCRETE MIX DESIGN CERTIFICATE

28054 Payne Rd Corvallis, Oregon 97339

Project: Monroe Library **Mix ID:** 62-314561

Contractor: 2G Contractors **Mix Description:** 4500 PSI 3/4" NO AIR

Submittal Date: July 6, 2012 Strength Required: 3,000 psi @ 28 Days

Application(s): All Interior 3000 psi applications. **Slump (inch):** 3.00 ± 1 **Air:** $2.0\% \pm 1.5\%$

MIX DESIGN QUANTITIES

			SSD	Spec	Absolute
Material / Spec.	Product / Source		Design	Gravity	Volume (ft ³)
Cement	Lafarge Richmond Type I,I	I	512 lb	3.15	2.60
Fly Ash	Boral Boardman Class C		92 lb	2.74	0.54
Water	Well		267 lb	1.00	4.28
Coarse Aggregate	G&W 3/4 - 1/2 Round	- 1/2 Round		2.63 *	4.16
Coarse Aggregate	G&W 1/2 - #4 Round		1016 lb	2.60 *	6.26
Fine Aggregate	G&W Concrete Sand	&W Concrete Sand		2.56 *	8.59
Water Reducer	Master Builders Pozzolith 8	80	30.6 oz **	1.00	0.03
	Air (Entrappe	d/Entrained)	<u>2.0</u> % <u>+</u> 1.	5%	0.54
	W/C Ratio: 0.44	Totals	3943 lb/yd ³		27.00 ft ³
	Master Builders Pozzolith 8 Air (Entrappe	d/Entrained)	<u>2.0</u> % ± 1.	1.00	0.03

Unit Wt 146.0 lb/ft³

AGGREGATE PROPERTIES

Material	ODOT ID	SSD Bulk	Absorption	F.M.	Dry Rodded	Unit Wt.
G&W 3/4 - 1/2 Round	02-029-2	2.63	2.40		102.6	lb/ft ³
G&W 1/2 - #4 Round	02-029-2	2.60	2.70		101.9	lb/ft ³
G&W Concrete Sand	02-029-2	2.56	3.50	2.84		
Coarse and fine aggre	egate gradations me	eet ASTM C 33	Combined Averages	2.84	102.2	lb/ft ³

Comments:

Footnotes: *SSD Weights and Specific Gravities **Admixture dosage rates will be adjusted according to manufacturers

recommendations to accommodate varying field conditions.

Designed By: Chris Williams, CCT 42291 Signature:

Green and White Rock Products

Concrete Compressive Performance Summary

P.O.Box 886 Corvallis Oregon, 97339. 541-757-1877

MTX	TD•	314561

MIX ID:	314561					
			MAX	7.00	7330	7880
			MIN	3.75	3510	5020
			NO.	30	30	30
			MEAN		4630	6310
			SD	1.0	768	705
			7:28			0.73
D.3.000					75	0.05
DATE			CAMPIE	GT MD	7D	28D
YY-MM-DD	PROJECT TICKET	TEST LAB	SAMPLE	SLMP	STR.	STR.
2008-05-31	62002862	GSW	GW08021	3.75	5171	7048
2008-12-18	2008810	G&W	08gw107	5.00	5558	6792
2009-02-27	2009770	G&W	09gw019	5.25	4712	6115
2009-10-06	Linn-Benton Community 2014138	FEI	F7275	4.50	4670	6500
2010-01-13	Santiam Christian 62022414		11gw009	5.50	4070	6260
2010-04-16	Western University B: 5002510	G&W	10gw053	6.75	4670	5260
2010-04-16	Western University B:65002510		10FE7618	6.75	3880	5430
2010-04-16	Western University B: 65002501		10FE7617	6.50	4020	5760
2010-04-23	Western University B: 62017309		10FE7632	6.00	5460	7815
2010-06-08	Western University Bi 2018303	FEI	10FE7706	5.00	7330	6225
2010-09-01	Western University Sa62020171	FEI	F7959	7.00	4310	6310
2010-09-02	Santiam Christian 2020208	G&W	10gw103	5.75	3750	5020
2010-10-04	Santiam Christian 62020975	G&W	10gw116	4.75	5240	7070
2010-10-12	Santiam Christian 62021150	G&W	10gw121	4.00	5350	7410
2010-10-25	Western University S:62021456	FEI	F8195	6.00	4770	6650
2010-10-26	Western University Sa62021464	G&W	10gw132	6.00	4840	6730
2010-10-26	Western University Sa62021464	FEI	F8196	6.25	5210	6565
2010-10-28	Western University S:62021520	FEI	F8207	6.00	4280	6390
2011-01-11	Santiam Christian 62022398	GW	11gw007	6.00	4110	5900
2011-05-10	Good Samaritan Medic:62023609	GW	11gw038	5.00	5500	7880
2011-05-24	Good Samaritan Medic:62023839	FEI	F8602	5.00	4720	6325
2011-07-07	Good Samaritan Medic:62024594	FEI	F8700	6.75	4040	5440
2011-07-20	Good Samaritan Medic:62024838	FEI	F8725	6.00	4310	6410
2011-08-15	Good Samaritan Medic:62025375	FEI	F8800	5.00	3820	5620
2011-08-19	Good Samaritan Medic:62025525	FEI	F8828	4.50	3780	5235
2011-09-23	Good Samaritan Medic:62026451	FEI	F8915	4.25	4630	6390
2011-10-11	Good Samaritan Medic:62026731	FEI	F8953	3.75	4740	6485
2011-11-02	Good Samaritan Medic:62027164	FEI	F8984	5.50	4180	6145
2011-11-16	Good Samaritan Medic:62027395		F9015	4.00	4310	6085
2011-12-02	Good Samaritan Medic:62027625	FEI	F9047	4.00	3510	5905

ACI f'cr Calculation Worksheet

Proposed Mix: 314561 Specified Compressive Strength (f'c): 3000

The test record(s) from the following mix design(s) will be used to calculate the sample standard deviation (s_s) per ACI 318 R-05 Chapter 5 section 5.3.1**

Mix 1: **314561** Tests **30** Std. Dev. **705**

Mix 2: Tests Std. Dev.

Average sample standard deviation (s_s): 705

With 15 or more test results for the proposed mix design:

Per ACI 318R-05, Chapter 5 table 5.3.1.2,

Modification Factor for sample standard deviation = 1.00Modified sample standard deviation, $s_s = 705$

Per ACI 318R-05, Chapter 5 section 5.3.2:

Eq. 5-1:
$$f'_{cr} = f'_{c} + 1.34s_{s}$$
 psi

Eq. 5-2:
$$f'_c < 5000 \longrightarrow f'_{cr} = f'_c + 2.33s_s - 500 \text{ or},$$

 $f'_c > 5000 \longrightarrow f'_{cr} = 0.90f'_c + 2.33s_s$

4143 psi

With less than 15 test results for the proposed mix design:

Per ACI 318R-05, Chapter 5 table 5.3.2.2.

$$f'_{c} < 3000$$
 \longrightarrow $f'_{cr} = f'_{c} + 1000$
 $f'_{c} \ge 3000$, and ≤ 5000 \longrightarrow $f'_{cr} = f'_{c} + 1200$
 $f'_{c} > 5000$ \longrightarrow $f'_{cr} = 1.10f'_{c} + 700$

Using the larger of the calculated results per section 5.3.2, or the value from table 5.3.2.2:

Calculated required average strength (f'cr): 4143 psi

The strength shown on the mix performance summary is:

6310 psi

Mix exceeds required average strength requirements by: 2167 psi

**Per ACI 318R-05 Chapter 5 section 5.3.1.1:

- a similar materials, quality control and conditions
- **b** within 1,000 psi of concrete specified for job
- **c** 30 consecutive tests or two groups of consecutive tests

CONCRETE MIX DESIGN CERTIFICATE

28054 Payne Rd Corvallis, Oregon 97339

Project: Monroe Library **Mix ID:** 62-314565

Contractor: 2G Contractors **Mix Description:** 4500 PSI 3/4" EXTERIOR WRA

Submittal Date: July 6, 2012 Strength Required: 3,000 psi @ 28 Days

Application(s): All Exterior 3000 psi applications. **Slump (inch):** 3.00 ± 1 **Air:** $2.0\% \pm 1.5\%$

MIX DESIGN QUANTITIES

				SSD	Spec	Absolute	
Material / Spec.	Product / Sou	rce		Design	Gravity	Volume (ft ³)	
Cement	Lafarge Richm	ond Type I,l	II	519 lb	3.15	2.64	
Fly Ash	Boral Boardma	an Class C		92 lb	2.74	0.54	
Water	Well			267 lb	1.00	4.28	
Coarse Aggregate	G&W 3/4 - 1/2	2 Round		875 lb	2.63 *	5.33	
Coarse Aggregate	G&W 1/2 - #4	Round		650 lb	2.60 *	4.01	
Fine Aggregate	G&W Concret	e Sand		1453 lb	2.56 *	9.09	
Air Entrainment	Master Builder	rs AE 90		2.4 oz **	1.00	0.00	
Water Reducer	Master Builder	rs Pozzolith	80	30.5 oz **	1.00	0.03	
	A	Air (Entrappe	ed/Entrained)	<u>4.0</u> % <u>+</u>	1.5%	1.08	
	W/C Ratio:	0.44	Totals	3858 lb/yd ³		27.00 ft ³	
			Unit Wt	142.9 lb/ft ³			

AGGREGATE PROPERTIES

Material	ODOT ID	SSD Bulk	Absorption	F.M.	Dry Rodded	Unit Wt.
G&W 3/4 - 1/2 Round	02-029-2	2.63	2.40		102.6	lb/ft ³
G&W 1/2 - #4 Round	02-029-2	2.60	2.70		101.9	lb/ft ³
G&W Concrete Sand	02-029-2	2.56	3.50	2.84		
Coarse and fine aggre	gate gradations me	eet ASTM C 33	Combined Averages	2.84	102.3	lb/ft ³

Comments:

Footnotes: *SSD Weights and Specific Gravities **Admixture dosage rates will be adjusted according to manufacturers

recommendations to accommodate varying field conditions.

Designed By: Chris Williams, CCT 42291

Signature:

Green and White Rock Products

Concrete Compressive Performance Summary

P.O.Box 886 Corvallis Oregon, 97339. 541-757-1877

MIX	ID:	314565

MIX ID:	314565							
					MAX	8.00	5630	8055
					MIN	2.75	3600	5110
					NO.	30	30	30
					MEAN	5.00	4660	6290
					SD	1.1	559	676
					7:28			0.74
DATE							7D	28D
YY-MM-DD	PROJECT	TICKET	TEST	LAB	SAMPLE	SLMP	STR.	STR.
0000 04 06		5000406	~		00 005		4000	5040
2009-04-06		5000406	G&W		09gw035	6.75	4970	5942
2009-04-06		2010306	G&W		09gw036	8.00	4746	6152
2009-04-27		2010646	G&W		09gw045	5.75	5553	7606
2010-01-28	Whitcomb Boat Ramp	2016111	G&W		10gw018	2.75	4380	6133
2010-01-28	Whitcomb Boat Ramp	2016113	G&W		10gw019	3.50	4230	5710
2010-08-17	5th Madison Mose	2019834	G&W		10gw098	4.75	5190	6730
2010-08-18	5th Madison Mose	2019860	G&W		10gw099	3.75	5140	6700
2010-08-26	Wah Chang	2020084	G&W		10gw101	4.25	5630	6300
2010-09-13	Talking Waters	65003108			10gw105	5.25	3960	5350
2010-10-05	Wah Chang	65003147			10gw117	5.50	4290	6040
2010-10-08	Wah Chang	62021106			10gw120	5.50	4380	5860
2010-10-14	Wah Chang	62021234			10gw124	5.25	4700	6010
2010-10-19	Country Club Drive	62021308			10gw127	5.50	4610	6100
2010-10-19	Wah Chang	62021327			10gw129	5.00	5300	6700
2010-10-22	Wah Chang	62021439			10gw131	5.25	4800	6330
2011-01-24	LBCC / Parking Lot	62022525			11gw014	4.75	4100	5580
2011-01-31	Wah Chang	62022588			11gw017	4.75	4420	6520
2011-02-18	Oregon Freeze Dry / I				11gw019	5.00	4680	6420
2011-03-14	Wah Chang	62023005			11gw020	4.00	5290	7300
2011-09-01	McHenry Funeral Home				F8863	3.75	4980	6615
	Alexander Court	62026352			F8904	5.25	3600	5110
	Corvallis Sewer Rehal	62026622	FEI		F8925	5.25	3730	5540
2011-10-14	Wah Chang	62026827	GW		11gw066	5.00	4320	5550
2011-12-02	Philomath Wastewater	62027642	GW		11gw073	6.00	4150	6280
2011-12-02	Philomath Wastewater	62027646	FEI		F9050	7.00	4300	6140
	Beca Rain Gardens	62027676	FEI		F9051	5.00	4540	6245
	Beca Rain Gardens	62027714	FEI		F9059	4.75	4050	5780
	Broadway Reservoir	62029080	GW		12gw018	3.25	5620	7560
2012-04-11	Broadway Reservoir	62029080	FEI		F9374	3.25	5450	8055
2012-04-23	Storm Water Retrofit	62029260	GW		12gw019	4.00	4780	6430

Green and White Rock Products

Concrete Compressive Performance Summary

P.O.Box 886 Corvallis Oregon, 97339. 541-757-1877

MIX	ID:	314565

MIX ID:	314565							
					MAX	8.00	5630	8055
					MIN	2.75	3600	5110
					NO.	30	30	30
					MEAN	5.00	4660	6290
					SD	1.1	559	676
					7:28			0.74
DATE							7D	28D
YY-MM-DD	PROJECT	TICKET	TEST	LAB	SAMPLE	SLMP	STR.	STR.
0000 04 06		5000406	~		00 005		4000	5040
2009-04-06		5000406	G&W		09gw035	6.75	4970	5942
2009-04-06		2010306	G&W		09gw036	8.00	4746	6152
2009-04-27		2010646	G&W		09gw045	5.75	5553	7606
2010-01-28	Whitcomb Boat Ramp	2016111	G&W		10gw018	2.75	4380	6133
2010-01-28	Whitcomb Boat Ramp	2016113	G&W		10gw019	3.50	4230	5710
2010-08-17	5th Madison Mose	2019834	G&W		10gw098	4.75	5190	6730
2010-08-18	5th Madison Mose	2019860	G&W		10gw099	3.75	5140	6700
2010-08-26	Wah Chang	2020084	G&W		10gw101	4.25	5630	6300
2010-09-13	Talking Waters	65003108			10gw105	5.25	3960	5350
2010-10-05	Wah Chang	65003147			10gw117	5.50	4290	6040
2010-10-08	Wah Chang	62021106			10gw120	5.50	4380	5860
2010-10-14	Wah Chang	62021234			10gw124	5.25	4700	6010
2010-10-19	Country Club Drive	62021308			10gw127	5.50	4610	6100
2010-10-19	Wah Chang	62021327			10gw129	5.00	5300	6700
2010-10-22	Wah Chang	62021439			10gw131	5.25	4800	6330
2011-01-24	LBCC / Parking Lot	62022525			11gw014	4.75	4100	5580
2011-01-31	Wah Chang	62022588			11gw017	4.75	4420	6520
2011-02-18	Oregon Freeze Dry / I				11gw019	5.00	4680	6420
2011-03-14	Wah Chang	62023005			11gw020	4.00	5290	7300
2011-09-01	McHenry Funeral Home				F8863	3.75	4980	6615
	Alexander Court	62026352			F8904	5.25	3600	5110
	Corvallis Sewer Rehal	62026622	FEI		F8925	5.25	3730	5540
2011-10-14	Wah Chang	62026827	GW		11gw066	5.00	4320	5550
2011-12-02	Philomath Wastewater	62027642	GW		11gw073	6.00	4150	6280
2011-12-02	Philomath Wastewater	62027646	FEI		F9050	7.00	4300	6140
	Beca Rain Gardens	62027676	FEI		F9051	5.00	4540	6245
	Beca Rain Gardens	62027714	FEI		F9059	4.75	4050	5780
	Broadway Reservoir	62029080	GW		12gw018	3.25	5620	7560
2012-04-11	Broadway Reservoir	62029080	FEI		F9374	3.25	5450	8055
2012-04-23	Storm Water Retrofit	62029260	GW		12gw019	4.00	4780	6430

ACI f'cr Calculation Worksheet

Proposed Mix: 314565 Specified Compressive Strength (f'c): 3000

The test record(s) from the following mix design(s) will be used to calculate the sample standard deviation (s_s) per ACI 318 R-05 Chapter 5 section 5.3.1**

Mix 1: 314565 Tests 30 Std. Dev. 676

Mix 2: Tests Std. Dev.

Average sample standard deviation (s_s): 676

With 15 or more test results for the proposed mix design:

Per ACI 318R-05, Chapter 5 table 5.3.1.2,

Modification Factor for sample standard deviation = 1.00Modified sample standard deviation, $s_s = 676$

Per ACI 318R-05, Chapter 5 section 5.3.2:

Eq. 5-1:
$$f'_{cr} = f'_{c} + 1.34s_{s}$$
 \rightarrow 3906 psi

Eq. 5-2:
$$f'_c < 5000 \longrightarrow f'_{cr} = f'_c + 2.33s_s - 500 \text{ or},$$

 $f'_c > 5000 \longrightarrow f'_{cr} = 0.90f'_c + 2.33s_s$

4075 psi

With less than 15 test results for the proposed mix design:

Per ACI 318R-05, Chapter 5 table 5.3.2.2.

$$f'_{c} < 3000$$
 \longrightarrow $f'_{cr} = f'_{c} + 1000$
 $f'_{c} \ge 3000$, and ≤ 5000 \longrightarrow $f'_{cr} = f'_{c} + 1200$
 $f'_{c} > 5000$ \longrightarrow $f'_{cr} = 1.10f'_{c} + 700$

Using the larger of the calculated results per section 5.3.2, or the value from table 5.3.2.2:

Calculated required average strength (f'cr): 4075 psi

The strength shown on the mix performance summary is:

6290 psi

Mix exceeds required average strength requirements by: 2215 psi

**Per ACI 318R-05 Chapter 5 section 5.3.1.1:

- a similar materials, quality control and conditions
- **b** within 1,000 psi of concrete specified for job
- **c** 30 consecutive tests or two groups of consecutive tests

Description

MB-AE 90 air-entraining admixture is for use in concrete mixtures. It meets the requirements of ASTM C 260, AASHTO M 154 and CRD-C 13.

Applications

Recommended for use in:

- Concrete exposed to cyclic freezing and thawing
- Production of high-quality normal or lightweight concrete (heavyweight concrete normally does not contain entrained air)

MB-AE™90

Air-Entraining Admixture

Features

Ready-to-use in the proper concentration for rapid, accurate dispensing

Benefits

- Improved resistance to damage from cyclic freezing and thawing
- Improved resistance to scaling from deicing salts
- Improved plasticity and workability
- Reduced permeability increased watertightness
- Reduced segregation and bleeding

Performance Characteristics

Concrete durability research has established that the best protection for concrete from the adverse effects of freezing and thawing cycles and deicing salts results from: proper air content in the hardened concrete, a suitable air-void system in terms of bubble size and spacing, and adequate concrete strength, assuming the use of sound aggregates and proper mixing, transporting, placing, consolidation, finishing and curing techniques. MB-AE 90 admixture can be used to obtain adequate freeze-thaw durability in a properly proportioned concrete mixture, if standard industry practices are followed.

Air Content Determination: The total air content of normal weight concrete should be measured in strict accordance with ASTM C 231, "Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method" or ASTM C 173/C 173M, "Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method." The air content of lightweight concrete should only be determined using the Volumetric Method. The air content should be verified by calculating the gravimetric air content in accordance with ASTM C 138/C 138M, "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete." If the total air content, as measured by the Pressure Method or Volumetric Method and as verified by the Gravimetric Method, deviates by more than 1-1/2%, the cause should be determined and corrected through equipment calibration or by whatever process is deemed necessary.

Guidelines for Use

Dosage: There is no standard dosage for MB-AE 90 admixture. The exact quantity of air-entraining admixture needed for a given air content of concrete varies because of differences in concrete-making materials and ambient conditions. Typical factors that might influence the amount of air entrained include: temperature, cementitious materials, sand gradation, sand-aggregate ratio, mixture proportions, slump, means of conveying and placement, consolidation and finishing technique.

Product Data: MB-AE™ 90

The amount of MB-AE 90 admixture used will depend upon the amount of entrained air required under actual job conditions. In a trial mixture, use 1/4 to 4 fl oz/cwt (16-260 mL/100 kg) of cementitious material. Measure the air content of the trial mixture, and, if needed, either increase or decrease the quantity of MB-AE 90 admixture to obtain the desired air content.

In mixtures containing water-reducing or set-control admixtures, the amount of MB-AE 90 admixture needed may be somewhat less than the amount required in plain concrete.

Due to possible changes in the factors that can affect the dosage of MB-AE 90 admixture, frequent air content checks should be made during the course of the work. Adjustments to the dosage should be based on the amount of entrained air required in the mixture at the point of placement.

If an unusually high or low dosage of MB-AE 90 admixture is required to obtain the desired air content, consult your BASF Construction Chemicals representative. In such cases, it may be necessary to determine that, in addition to a proper air content in the fresh concrete, a suitable air-void system is achieved in the hardened concrete.

Dispensing and Mixing: Add MB-AE 90 admixture to the concrete mixture using a dispenser designed for air-entraining admixtures, or add manually using a suitable measuring device that ensures accuracy within plus or minus 3% of the required

For optimum, consistent performance, the air-entraining admixture should be dispensed on damp, fine aggregate. If the concrete mixture contains fine lightweight aggregate, field evaluations should be conducted to determine the best method to dispense the air-entraining admixture.

Precaution

In a 2005 publication from the Portland Cement Association (PCA R&D Serial No. 2789), it was reported that problematic air-void clustering that can potentially lead to above normal decreases in strength was found to coincide with late additions of water to air-entrained concretes. Late additions of water include the conventional practice of holding back water during batching for addition at the jobsite. Therefore, caution should be exercised with delayed additions of water to air-entrained concrete. Furthermore, an air content check should be performed after any post-batching addition to an air-entrained concrete mixture.

Product Notes

Corrosivity - Non-Chloride, Non-Corrosive: MB-AE 90 admixture will neither initiate nor promote corrosion of reinforcing and prestressing steel embedded in concrete, or of galvanized floor and roof systems. No calcium chloride or other chloride-based ingredients are used in the manufacture of this admixture.

Compatibility: MB-AE 90 admixture may be used in combination with any BASF Construction Chemicals admixture, unless stated otherwise on the data sheet for the other product. When used in conjunction with other admixtures, each admixture must be dispensed separately into the concrete mixture.

Storage and Handling

Storage Temperature: MB-AE 90 admixture should be stored and dispensed at 31 °F (-0.5 °C) or higher. Although freezing does not harm this product, precautions should be taken to protect it from freezing. If MB-AE 90 admixture freezes, thaw at 35 °F (2 °C) or above and completely reconstitute by mild mechanical agitation. Do not use pressurized air for agitation.

Shelf Life: MB-AE 90 admixture has a minimum shelf life of 18 months. Depending on storage conditions, the shelf life may be greater than stated. Please contact your BASF Construction Chemicals representative regarding suitability for use and dosage recommendations if the shelf life of MB-AE 90 admixture has been exceeded.

Safety: Chemical goggles and gloves are recommended when transferring or handling this material.

Packaging

MB-AE 90 admixture is supplied in 55 gal (208 L) drums, 275 gal (1040 L) totes and by bulk delivery.

Related Documents

Material Safety Data Sheets: MB-AE 90 admixture.

Additional Information

For additional information on MB-AE 90 admixture, or its use in developing a concrete mixture with special peformance characteristics, contact your BASF Construction Chemicals representative.

The Admixture Systems business of BASF Construction Chemicals is a leading provider of innovative additives for specialty concrete used in the ready mix, precast, manufactured concrete products, underground construction and paving markets throughout the NAFTA region. The Company's respected Master Builders brand products are used to improve the placing, pumping, finishing, appearance and performance characteristics of concrete.

BASF Construction Chemicals, LLC Admixture Systems

United States, 23700 Chagrin Boulevard, Cleveland, Ohio 44122-5544 ■ Tel: 800 628-9990 ■ Fax: 216 839-8821 Canada 1800 Clark Boulevard, Brampton, Ontario L6T 4M7 ■ Tel: 800 387-5862 ■ Fax: 905 792-0651

Description

Pozzolith 80 ready-to-use, liquid admixture is used for making more uniform and predictable quality concrete.

Pozzolith 80 admixture meets ASTM C 494/C 494M requirements for Type A, water-reducing, Type B, retarding, and Type D, retarding and water-reducing, admixtures.

Applications

Recommended for use in:

- Prestressed concrete
- Precast concrete
- Reinforced concrete
- Shotcrete
- Lightweight concrete
- Pumped concrete
- 4x4TM Concrete
- Pervious Concrete
- Rheodynamic[®] Self-Consolidating Concrete (SCC)

POZZOLITH® 80

Water-Reducing Admixture

Features

- Reduced water content required for a given workability
- Controlled setting characteristics normal or retarded

Benefits

- Increased compressive and flexural strength
- Improved workability
- Reduced segregation
- Flexibility in the scheduling of placing and finishing operations
- Offsets effects of early stiffening during extended delays between mixing and placing
- Helps eliminate cold joints
- Dead-load deflection can take place (before concrete sets) in extended pours for bridge decks, cantilevers, nonshored structural elements, etc.
- Peak temperature and/or rate of temperature rise lowered in mass concrete thereby reducing thermal cracking

Performance Characteristics

Rate of Hardening: The temperature of the concrete mixture and the ambient temperature affect the hardening rate of concrete. At higher temperatures, concrete stiffens more rapidly which may cause problems with placing and finishing. The dosage range of Pozzolith 80 admixture can be varied to provide the desired setting characteristics.

Guidelines for Use

Dosage: Depending on the setting characteristics desired, Pozzolith 80 admixture is recommended for use within the dosage range of 3-10 fl oz/cwt (195-650 mL/100 kg) of cementitious materials for most concrete mixtures using average concrete ingredients. Because of variations in job conditions and concrete materials, dosages other than the recommended amounts may be required. In such cases, contact your BASF Construction Chemicals representative.

Product Data: POZZOLITH® 80

Product Notes

Corrosivity – Non-Chloride, Non-Corrosive: Pozzolith 80 admixture will neither initiate nor promote corrosion of reinforcing steel in concrete. This admixture does not contain intentionally-added calcium chloride or other chloride-based ingredients.

Compatibility: Pozzolith 80 admixture may be used in combination with any BASF Construction Chemicals admixtures. When used in conjunction with other admixtures, each admixture must be dispensed separately into the mix.

Storage and Handling

Storage Temperature: If Pozzolith 80 admixture freezes, thaw at 35 °F (2 °C) or above and completely reconstitute by mild mechanical agitation. **Do not use pressurized air for agitation.**

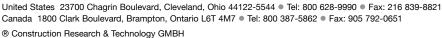
Shelf Life: Pozzolith 80 admixture has a minimum shelf life of 18 months. Depending on storage conditions, the shelf life may be greater than stated. Please contact your BASF Construction Chemicals representative regarding suitability for use and dosage recommendations if the shelf life of Pozzolith 80 admixture has been exceeded.

Packaging

Pozzolith 80 admixture is supplied in 55 gal (208 L) drums, 275 gal (1040 L) totes and by bulk delivery.

Related Documents

Material Safety Data Sheets: Pozzolith 80 admixture.


Additional Information

For additional information on Pozzolith 80 admixture or its use in developing a concrete mix with special performance characteristics, contact your BASF Construction Chemicals representative.

The Admixture Systems business of BASF Construction Chemicals is a leading provider of innovative additives for specialty concrete used in the ready mix, precast, manufactured concrete products, underground construction and paving markets throughout the NAFTA region. The Company's respected Master Builders brand products are used to improve the placing, pumping, finishing, appearance and performance characteristics of concrete.

BASF Construction Chemicals, LLC Admixture Systems

National Ready Mixed Concrete Association

Certificate of Conformance For Concrete Production Facilities

THIS IS TO CERTIFY THAT

Plant No. 62, Corvallis, OR

Green & White Rock Products, Inc.

has been inspected by the undersigned licensed professional engineer for conformance with the requirements of the *Check List for Ready Mixed Concrete Production Facilities*. As of the inspection date, the facilities met the requirements for production by

Truck Mixing with Automatic Batching and Recordings of Cementitious Materials, Aggregate, Water, and Chemical Admixtures

Signature of Licensed Professional Engineer

February 25, 2011

February 25, 2013

Inspection Date

Certification Expiration Date

This company will maintain these facilities in compliance with the *Check List* requirements and will correct promptly any deficiencies, which develop.

Simular School Office

General Manager

Signature of Company Official

Title of Company Official

NOTICE: The Check List indicates only that plant facilities are satisfactory for the production of concrete when properly operated. Conformance of the concrete itself with specification requirements must be verified by usual inspection methods in accordance with sales agreements.

This certificate is issued by the National Ready Mixed Concrete Association on verification that the production facility conforms to the requirements of the NRMCA Certification of Ready Mixed Concrete Production Facilities, QC3. Unauthorized reproduction or misuse of this certificate may result in legal action.

Plant ID #: 826925

Certification ID #: 12793

© 1965, 1992, 2001, 2002, 2006

National Ready Mixed Concrete Association 900 Spring Street • Silver Spring • Maryland 20910